

PLASTIC BUSHES AND BEARING

QUESTIONNAIRE FOR MATERIAL SELECTION AND DESIGN

A Bush or a bearing is known as a Plain Bearing, i.e. they dont have rolling elements like a ball bearing. The primary function is to support movement by being an interface between rotating or sliding parts. This crucial component is designed to reduce friction between moving parts and act as a sacrifical wear component.

BENEFITS OF PLASTIC BUSHES & BEARINGS

Eliminating Lubricants – unlike rolling element beraings and bronze bushes, often plastic bushes and beraings can run dry, especially when self-lubricating materials such as Ertalon LFX and Ertalyte TX are utilized.

Dirty & dusty conditions – where traditional bearings suffer, plastics with high abrasion resistance such as Polystone 7000 and Ertalon LFX can provide maintenance free operation.

Low Friction – metal-on-metal sliding in the case of bronze results in higher friction than plastic-on-metal, requiring higher energy and wear rates, opposed to the low friction of plastics, such as Nylatron NSM, Nylatron 703XL, Ertalyte TX and Ticomp S.

Reduced wear – traditional plain bushes such as bronze result in higher shaft wear and therefore reduced service life of both the bush and the shaft (or counter-face).

Dotmar has qualified engineers that can provide direct support with plastic bush and bearing designs, including conducting calculations and reports.

BEARING DESIGN GUIDE APPLICATION

DESIGN COIDE AFFEICATION									
Company									
Address			City/Suburb						
			State						
			Post Code						
Contact									
Phone									
Email									
Technical Information Required For Bearing Calculation									
Material Sugg	estion (optional)								

recunical information Required	FOR B	earii	ng Ca	aic	uiati	on			
Material Suggestion (optional)									
Nominal Shaft Diameter Tolerances		mm /	/		m	m /			
Nominal Housing Diameter Tolerances	erances		mm /		mm /				
Length of Bearing			mm						
Load			kg; Newtons 9.81N = 1kg						
RPM									
Ambient Temprature	Max				С	Max		С	
Relative Operating Time			% 1 Hour Continously = 100%						
Is It Retained Along Its Length?		Yes		N	0				
Lubricated Continously?		Yes		N	0				
Severe Shocks?		Yes		N	0				
Submerged in Water?		Yes		N	0				
Long Time Static Load?		Yes		N	0				
Relative Humidity?		Yes		N	0				
Split Bush?		Yes		N	0				
Presence of Chemicals		Yes		N	0				
	If Yes	Type:					Concentrat	cion:	
Application									